Abstract
Using X-ray diffraction (both in vacuum and in air), derivatomass-spectrometry and thermo-programmed oxidation, phase transformations in nanostructured Cd–Ni system occurring while heating up 720 °C were described. These metal powders were obtained by joint reduction from aqueous solutions of salts with hydrazine. When study their composition, earlier unknown phases were detected (intermetallide CdNi3 and solid solution CdxNi1–x with face centered cubic structure) and among the known intermetallides (Cd5Ni and CdNi), only Cd5Ni was found. As a consequence, phase transformations in the obtained nanostructured powders were remarkably different from those present on the Cd–Ni phase diagram. The intermediates and FCC phase decompose independently with formation of individual initial components (Cd and Ni) without intermediate product. At relatively high Cd concentration in the system, intermediate CdNi3 phase formation from Cd5Ni and CdxNi1–x phases, which are polar opposites in composition, is possible. The decomposition temperatures of Cd5Ni and melting point of Cd in the nanostructured state were lower than those specified by the phase diagram by 170 and 70 °C, respectively, which well corresponded to the concept of effective (high) temperatures attributed to the nanostructured systems due to the energy saturation of the con stituent nanocrystallites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.