Abstract

Comparative study of the regularities of the reaction and specific features of phase formation during electrochemical incorporation of lithium from propylene carbonate solutions in intermetallic aluminum-based compounds (CuAl2, Mg2Al3, and NiAl) and pure metals (Al, Cu, Mg, and Ni) was performed. The initial stage of the process was shown to be dissolution of lithium in the solid phase limited by diffusion for all studied substrates. Trace amounts of lithium-containing by-products, were detected in NiAl, Ni, and Cu samples. The subsequent change in the limiting stage is related to the beginning of formation of a new phase: metallic lithium (on Mg2Al3, NiAl, Mg, Ni, and Cu) or LiAl (on Al and CuAl2 cathodes). In the latter case, the solid-phase substitution occurs, which is formally described by the equation: CuAl2+2Li++2e→2LiAl+Cu. Thus, the specific features of phase formation on the CuAl2 electrode correspond to the highest (among three intermetallides studied) concentration of Al atoms in the crystal lattice of the compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.