Abstract

This study focuses on the elaboration of duplex stainless steels (DSS) from powder mixtures using spark plasma sintering (SPS). Different mass fractions of an austenitic 316L powder and a ferritic 410L one were blended and then sintered by SPS. Microstructural characterizations of the sintered samples obtained from different powder mixtures were performed. They were coupled with marking experiments of the powder particles’ surface. The results showed the formation of martensite within the ferritic powder and at the austenite/ferrite interfaces, following two different mechanisms. In addition, it was found that the width of the martensitic regions is mainly influenced by the diffusion of Cr and Ni from the austenitic to the ferritic powder during sintering. The characterizations revealed that the originality of this approach lies in the particular microstructure obtained after sintering. The characteristic size of the ferritic and austenitic domains in the final material is that of the initial powder particles (up to some hundred microns). Moreover, each domain is formed by equiaxed and isotropic grains, having a size ranging from some microns to some tens of microns. This particular microstructure justifies the use of the term “composite duplex stainless steels” (COMPLEX) for this kind of new DSS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.