Abstract

Nimesulide is a nonsteroidal anti-inflammatory drug (NSAID) and a COX-2 inhibitor. The native crystal structure of nimesulide (or Form I) has been characterized in the literature by X-ray powder diffraction (XRPD) lines, whereas full three-dimensional coordinates are known for a second polymorph (Form II). A detailed structural characterization and phase stability of nimesulide polymorphs were carried out. Rod-like crystals of Form I (space group Pca2(1); number of symmetry-independent molecules, Z' = 2) were crystallized from EtOH concomitantly with Form II (C2/c, Z' = 1). These conformational polymorphs have different torsion angles at the phenoxy and sulfonamide groups. The crystal structures are stabilized by N-H · · · O hydrogen bonds and C-H · · · O, C-H · · · π interactions. Phase transition from the metastable Form (II) to the stable modification (I) was studied using differential scanning calorimetry, hot-stage microscopy, solid-state grinding, solvent-drop grinding, and slurry crystallization. The phase transition was monitored by infrared, Raman, and ss-nuclear magnetic resonance spectroscopy; and XRPD and single-crystal X-ray diffraction. The stable polymorph I was obtained in excess during solution crystallization, grinding, and slurry methods. Intrinsic dissolution and equilibrium solubility experiments showed that the metastable Form II dissolves much faster than the stable Form I.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call