Abstract

The microstructure of an (α + γ) duplex Fe-10.1Al-28.6Mn-0.46C alloy has been investigated by means of optical microscopy and transmission electron microscopy (TEM). In the as-quenched condition, extremely fine D03 particles could be observed within the ferrite phase. During the early stage of isothermal aging at 550 °C, the D03 particles grew rapidly, especially the D03 particles in the vicinity of the α/γ grain boundary. After prolonged aging at 550 °C, coarse K’-phase (Fe, Mn)3AlC precipitates began to appear at the regions contiguous to the D03 particles, and —Mn precipitates occurred on the α/γ and α/α grain boundaries. Subsequently, the grain boundary β-Mn precipitates grew into the adjacent austenite grains accompanied by a γ→ α + β-Mn transition. When the alloy was aged at 650 °C for short times, coarse. K-phase precipitates were formed on the α/γ grain boundary. With increasing the aging time, the α/γ grain boundary migrated into the adjacent austenite grain, owing to the heterogeneous precipitation of the Mn-enrichedK phase on the grain boundary. However, the α/γ grain boundary migrated into the adjacent ferrite grain, even though coarse K-phase precipitates were also formed on the α/γ grain boundary in the specimen aged at 750 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call