Abstract
An elemental powder mixture corresponding to the Al3Ni2 phase stoichiometry was subjected to mechanical alloying in a high-energy ball mill. Products of this process after various milling times were investigated by differential scanning calorimetry. The phase transformations occurring in the material throughout milling and during heating in a calorimeter were investigated by X-ray diffraction method. This study revealed that a metastable nanocrystalline NiAl intermetallic phase was formed during the mechanical alloying process. Heating of the synthesised powders in the calorimeter caused phase transformations, the product of which was an equilibrium Al3Ni2 intermetallic phase or a mixture of NiAl, Al3Ni2 and Al3Ni intermetallic phases, depending on the milling time and the temperature up to which the material was heated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.