Abstract

The phase transformation from martensite to austenite during intercritical tempering with high heating rate in a low carbon martensitic stainless steel Fe-13%Cr-4%Ni-Mo has been investigated to clarify the microstructure evolution in some regions of the weld joint heat affected zone (HAZ). The experimental results indicate that the start and finish temperatures of the martensite to austenite transformation keep constant when the heating rate is higher than 10 K/s, and the transformation is much faster than nickel diffusion. The mechanism of the martensite to austenite transformation changes from diffusion to diffusionless during the intercritical tempering when the heating rate is higher than 10 K/s. The diffusionless transformation and higher A s temperature render it difficult for any austenite to remain at room temperature during the intercritical tempering with high heating rate that occurs in the HAZ. Adding a proper intercritical tempering with low heating rate can induce some reversed austenite in the rapid heated sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.