Abstract

Transformation behaviours and shape memory characteristics in Ti-45xNi-5Cu-xMo x=0.3, 0.5, or 1.0 at.- alloys were investigated by means of electrical resistivity measurements, differential scanning calorimetry, X-ray diffraction, thermal cycling tests under constant load, and tensile tests. The two stage transformation B2-B19-B19 occurred in Ti-45xNi-5Cu-xMo alloys, and complete separation of the B2-B19 transformation from the B19-B19 transformation was observed in Ti-44.0Mo-5Cu-1.0Mo at.- alloy. Substitution of Mo for Ni in Ti-45Ni-5Cu at.- alloy increased the critical stress for slip deformation and the pseudoelastic recovery. The maximum recoverable elongations of Ti-44.7Ni-5Cu-0.3Mo at.- and Ti-44.5Ni-5Cu-0.5Mo at.- alloys were 6.4 and 7 respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call