Abstract
In the present study, the phase transformation behavior of an Fe–17Mn–5Si–10Cr–4Ni–1(V,C) (ma.-%) shape memory alloy is investigated by thermo-mechanical tests with various stress–temperature histories under uniaxial deformation conditions. The stress–strain response and the microstructural evolution of the alloy during deformation at different temperatures reveal that mainly stress induced martensite phases form until the stress level reaches the yielding point for the irrecoverable slip. The reverse transformation occurred mainly within the temperature range of 0‒175°C. Based on the microstructural and thermo-mechanical analysis, a complete stress–temperature phase diagram for the FCC/HCP transformation of this alloy is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.