Abstract

Background/purposeTemperature-dependent phase compositional changes influence the mechanical properties of heat-treated nickel-titanium (NiTi) rotary instruments. This study evaluated the phase composition, bending properties, and cyclic fatigue resistance of HyFlex EDM NiTi rotary instruments against differently heat-treated and non-heat-treated NiTi instruments at body temperature (BT). Materials and methodsHyFlex EDM OneFile (EDM) instruments, heat-treated HyFlex CM (CM) and Twisted File (TF) instruments, and non-heat-treated K3 instruments (size #25/.08) were subjected to differential scanning calorimetry, and the martensitic, R-phase, and reverse transformation starting and finishing temperatures were determined. A cantilever bending test and a cyclic fatigue test were conducted at BT (37 °C ± 1.0 °C), and the bending load and number of cycles to failure (NCF) were recorded. Statistical analysis was performed using Kruskal–Wallis and Mann–Whitney U tests (α = 0.05). ResultsTF and K3 had reverse transformation finishing temperatures lower than BT, while those for EDM and CM were higher than BT. The bending loads at a 0.5 mm deflection were in the order of EDM < TF < CM < K3 (P < 0.05), and those at a 2.0 mm deflection were EDM < CM and TF < K3 (P < 0.05). EDM had the highest NCF among the four instruments (P < 0.05). ConclusionThe EDM instrument had a reverse transformation finishing temperature higher than BT indicating its martensite/R-phase composition at BT. The EDM instrument had superior flexibility and greater resistance to cyclic fatigue than the CM, TF, and K3 instruments at BT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.