Abstract
We demonstrate the phase transfer of colloidal gold particles synthesized in an aqueous medium into toluene containing the cationic surfactant, octadecylamine (ODA). During vigorous shaking of the biphasic mixture, rapid transfer of the gold particles into the organic phase was observed. The phase transfer of the colloidal gold particles arises due to coupling of the gold particles with the organic phase ODA molecules via either coordination bond formation or weak covalent interaction. This process renders the particles sufficiently hydrophobic and soluble in the organic phase. The ODA-stabilized colloidal gold particles could be separated out in the form of a powder and readily dissolved in different organic solvents. The nature of binding of the ODA molecules to the gold particle surface was characterized using thermogravimetry/differential thermal analysis, as well as Fourier transform infrared spectroscopy. To the best of our knowledge, this is the first demonstration of the phase transfer of colloidal gold particles by direct co-ordination to primary amines. The protocol described herein does not require the use of acid, a feature common to similar phase transfer protocols involving alkanethiols as the co-ordinating and hydrophobizing agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.