Abstract

We investigate the collective dynamics of bursting neurons on clustered networks. The clustered network model is composed of subnetworks, each of them presenting the so-called small-world property. This model can also be regarded as a network of networks. In each subnetwork a neuron is connected to other ones with regular as well as random connections, the latter with a given intracluster probability. Moreover, in a given subnetwork each neuron has an intercluster probability to be connected to the other subnetworks. The local neuron dynamics has two time scales (fast and slow) and is modeled by a two-dimensional map. In such small-world network the neuron parameters are chosen to be slightly different such that, if the coupling strength is large enough, there may be synchronization of the bursting (slow) activity. We give bounds for the critical coupling strength to obtain global burst synchronization in terms of the network structure, that is, the probabilities of intracluster and intercluster connections. We find that, as the heterogeneity in the network is reduced, the network global synchronizability is improved. We show that the transitions to global synchrony may be abrupt or smooth depending on the intercluster probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.