Abstract

We study phase synchronization for a walker on a ratchet potential. The walker consist of two particles coupled by a bistable potential that allow the interchange of the order of the particles while moving through a one-dimensional asymmetric periodic ratchet potential. We consider the deterministic and the stochastic dynamics of the center of mass of the walker in a tilted ratchet potential with an external periodic forcing, in the overdamped case. The ratchet potential has to be tilted in order to obtain a rotator or self-sustained nonlinear oscillator in the absence of external periodic forcing. This oscillator has an intrinsic frequency that can be entrained with the frequency of the external driving. We introduced a linear phase through a set of discrete time events and the associated average frequency, and show that this frequency can be synchronized with the frequency of the external driving. In this way, we can properly characterize the phenomenon of synchronization through Arnold tongues and show that the local maxima in the average velocity of the center of mass of the walker, both in the deterministic case and in the presence of noise, correspond to the borders of these Arnold tongues. In this way, we established a connection between optimal transport in ratchets and the phenomenon of phase synchronization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call