Abstract

The dynamic rheological and microstructural properties of rennet-casein-based imitation cheeses containing various concentrations of potato starch were investigated using a stress-controlled rheometer and confocal laser scanning microscopy. The influence of added starch on the size of the oil droplets in the imitation cheeses was also examined. Imitation cheeses with 0–15% protein replaced by starch were processed in a Rapid Visco Analyser (RVA) at 90 °C for 10 min at a shear rate of 800 rev/min and were then evaluated using oscillatory shear measurement and a temperature sweep (20–90 °C). The storage modulus ( G′) of the rennet casein imitation cheeses increased abruptly at added starch concentrations >4%. In the temperature range 20–90 °C, tan δ of the imitation cheeses decreased with increasing starch concentration and was <1 at added starch concentrations >4%. A binary continuous phase consisting of a protein phase and a starch phase was observed in systems containing >4% starch, whereas the starch was dispersed in the protein matrix as small particles of irregular shapes at added starch concentrations ≤4%. As the dispersed phase, the size of the oil droplets increased with starch addition in the imitation cheeses. The marked increase in G′ and the reduction in tan δ may be attributed to the formation of a binary continuous separated phase structure in imitation cheeses containing added starch that is driven by thermodynamic incompatibility between rennet casein and starch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call