Abstract
The microstructural revolution of non-hydrogenated and hydrogenated Mg-based Mg-10Ni-2Mm alloy was studied. PCT and H-absorption/desorption kinetics were performed to evaluate the hydrogen storage properties. Storage capacities of 4.75, 5.03 and 5.27wt.%H for the alloy were obtained at 300, 325 and 350°C, respectively. The phases in the hydrogenated samples are mainly MgH2 and Mg2NiH4. Two absorption/desorption plateau existed in the PCT curves at each isothermal temperature. The values of ΔH and ΔS of the Mg2NiH4-formation was respectively -61.5 kJ/mol H2 and -118.6 J/mol H2 K which is lower compared with literature values. The kinetics of the H-absorption/desorption reactions for the alloy was improved by increasing the temperature. The alloy at 350°C showed the best kinetics performance of the H-absorption/desorption among the three temperatures. It is suggested that metallic particles and Mm may be mainly responsible for the improvement of the H-absorption/desorption kinetics, and Ni for the enhancement of hydrogen absorption capacity of the alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.