Abstract
The structure, phase composition, and magnetic properties of carbon nanotubes filled with iron nanoparticles and obtained by thermolysis of a mixture of ferrocene and C60 fullerene or ferrocene and orthoxylene at a temperature of 800°C are investigated. Electron microscopy, X-ray diffraction, and Mossbauer spectroscopy data lead to the conclusion that carbon nanotubes are multilayer systems partially filled with iron nanoparticles and/or nanorods. Metallic inclusions in nanotube channels form α-Fe, γ-Fe, and Fe3C phases. The concentration of each phase in the samples is determined. It is shown that 10–20-nm iron clusters in nanotubes exhibit magnetic properties typical of bulk phases of iron. High elasticity of carbon nanotube walls facilitates stabilization of the high-temperature γ-Fe phase; the relative concentration of this phase in a sample can be increased by lowering the concentration of ferrocene in the initial reaction mixture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.