Abstract

Irradiation of metals and alloys with neutrons, electrons, heavy ions, or γ-rays may introduce up to 10 8 J/mol of energy in the form of atomic displacements. This energy, which is in the form of vacancies, self-interstitials, and cores of displacement cascades is then available to produce a range of phase changes and microstructural alterations which are not observed under thermal conditions. There exist numerous mechanisms to convert part of this displacement energy into microstructural change, including irradiation-induced solute segregation, Frenkel pair recombination at the particle: matrix interface, irradiation disordering or amorphization, and recoil resolution of atoms from precipitates. In addition, the cores of displacement cascades may act as precipitate nucleation sites and Frenkel pair recombination may trigger spinodal-like instabilities. The theory of these mechanisms is developed in some detail, and is followed by a systematic review of experimentals observations of irradiation-altered phase stability. The observations include enhanced nucleation on displacement cascades, precipitation induced by solute segregation to defect sinks, nucleation of wrong phases, disordering and amorphization, Frenkel pair recombination driven precipitate, and inverse Ostwald ripening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.