Abstract
Nanostructured materials provide access to tailor-made materials properties by microstructural design. Excellent mechanical properties such as high strength or wear resistance are often found in nanocrystalline materials. For magnetic materials, the design of nanostructured composites offers advantages if the structural scales match the intrinsic magnetic length scales. In some cases, as in the new nanocrystalline soft magnetic alloys, the combination of amorphous and nanocrystalline phases is necessary to obtain the desired properties. This rises the question of the limiting size for a stable crystalline structure, especially in contact with an amorphous phase. These considerations, which have been of interest for basic research in the context of the microcrystalline model for amorphous materials, are of technical importance for the optimization of nanostructured composites. Recent model experiments about the stability of thin Fe-based glass forming alloy films are reviewed. A relationship between phase stability, composition, and interface density has been established. The implications of the results for the design of nanostructured alloy systems are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.