Abstract
First-principles investigations are employed to provide a fundamental understanding of the structural features, phase stability, mechanical properties, Debye temperature, and hardness of manganese tetraboride. Eight candidate structures of known transition-metal tetraborides are chosen to probe. The calculated lattice parameters, elastic properties, Poisson’s ratio, and [Formula: see text] ratio are derived. It is observed that the monoclinic structure with [Formula: see text] symmetry (MnB4–MnB4) is the most stable in energy. The mechanical and thermodynamic stabilities of seven possible phases are confirmed by the calculated elastic constants and formation enthalpy. Moreover, the analysis on density of states demonstrates semiconducting behavior of MnB4–MnB4 and different metallic behaviors of other phases. The estimated hardness of MnB4–MnB4 is 38.3 GPa, which is in good agreement with experimental value. Furthermore, the relationship between hardness and Debye temperature is investigated and verifies that MnB4–MnB4 is a newly potential semiconducting ultrahard material with high melting point. It provides a new perspective of searching for semiconducting superhard materials to be applied in extreme conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.