Abstract

Monolithic zirconia materials (3Y‐TZP, 10Ce‐TZP, and 12Ce‐TZP) and their composites with 30 vol% alumina were produced. Low‐temperature aging degradation (LTAD) and mechanical properties of materials were investigated. For assessment of phase stability in the materials, aging experiments were performed in water at 90°C for 32, 64, and 128 days. The aging phenomenon was characterized and monitored using X‐Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Four‐point bending was used to determine the flexural strength of materials before and after aging treatment in water at 90°C for 2, 4, and 6 months. The aging experiments resulted in different phase transformation rates for the materials studied. The 12Ce‐TZP containing materials showed the highest resistance to low‐temperature aging and 3Y‐TZP containing materials showed the highest bending strength. When compared, no change in flexural strength was observed between the materials not exposed to aging and the aged materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.