Abstract

Twelve different equiatomic five-metal carbides of group IVB, VB, and VIB refractory transition metals are synthesized via high-energy ball milling and spark plasma sintering. Implementation of a newly developed ab initio entropy descriptor aids in selection of candidate compositions for synthesis of high entropy and entropy stabilized carbides. Phase formation and composition uniformity are analyzed via XRD, EDS, S/TEM-EDS, and EXAFS. Nine of the twelve candidates form true single-phase materials with the rocksalt (B1) structure when sintered at 2473 K and can therefore be investigated as high entropy carbides (HECs). The composition (V0.2Nb0.2Ta0.2Mo0.2W0.2)C is presented as a likely candidate for further investigation as an entropy stabilized carbide. Seven of the carbides are examined for mechanical properties via nanoindentation. The HECs show significantly enhanced hardness when compared to a rule of mixtures average of the constituent binary carbides and to the highest hardness of the binary constituents. The mechanical properties are correlated to the electronic structure of the solid solutions, offering a future route to tunability of the mechanical properties of carbide ceramics via exploration of a new complex composition space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.