Abstract

The phase-space representation of electromagnetic radiometry is founded on the electromagnetic generalized radiance tensors, which allow overcoming the limitations due to the scalar electromagnetic generalized radiances. The fundamental quantities of both scalar generalized radiometry and classical radiometry or photometry become particular cases. The transport of measurable radiometric quantities by the electromagnetic field is described in terms of the propagation of the contributions from individual radiators and their redistribution over each wavefront on propagation. A physical meaning is given to the negative values of the generalized radiance, which gives new insights into Poynting's theory of energy transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.