Abstract
The correlation between level velocities and eigenfunction intensities provides a new way of exploring phase space localization in quantized nonintegrable systems. It can also serve as a measure of deviations from ergodicity due to quantum effects for typical observables. This paper relies on two well known paradigms of quantum chaos, the bakers map and the standard map, to study correlations in simple, yet chaotic, dynamical systems. The behaviors are dominated by the presence of several classical structures. These primarily include short periodic orbits and their homoclinic excursions. The dependences of the correlations deriving from perturbations allow for eigenfunction features violating ergodicity to be selectively highlighted. A semiclassical theory based on periodic orbit sums leads to certain classical correlations that are superexponentially cut off beyond a logarithmic time scale. The theory is seen to be quite successful in reproducing many of the quantum localization features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.