Abstract
Nonlinear reaction dynamics through a rank-one saddle is investigated for many-particle system with spatial rotation. Based on the recently developed theories of the phase space geometry in the saddle region, we present a theoretical framework to incorporate the spatial rotation which is dynamically coupled with the internal vibrational motions through centrifugal and Coriolis interactions. As an illustrative simple example, we apply it to isomerization reaction of HCN with some nonzero total angular momenta. It is found that no-return transition state (TS) and a set of impenetrable reaction boundaries to separate the "past" and "future" of trajectories can be identified analytically under rovibrational couplings. The three components of the angular momentum are found to have distinct effects on the migration of the "anchor" of the TS and the reaction boundaries through rovibrational couplings and anharmonicities in vibrational degrees of freedom. This method provides new insights in understanding the origin of a wide class of reactions with nonzero angular momentum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.