Abstract

In tokamak discharges, toroidal Alfvén eigenmodes often experience complex semi-periodic frequency modulation known as chirping. These events modify the local high energy particle distribution and are expected to occur in many future fusion devices, which include energetic beams or fusion products. This paper presents a study of simulations of mode chirping made in order to better understand its phase-space properties in a realistic tokamak configuration. We find a mechanism that permits rapid repeated chirping with strong amplitude variation in each chirp. Each chirp is associated with an amplitude crash to low magnitude and local manipulation of the density gradients through a shift of mode phase through π. The chirping produces high density clumps, which propagate down the fast ion density gradient and low density holes that propagate up the density gradient away from the resonance. This flow of particles across the resonance provides an energy source and local gradients for repeated chirping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.