Abstract

We studied the cosmological dynamics of a dilatonic ghost condensate field as a source of dark energy, which is non-minimally coupled to gravity through torsion. We performed a detailed phase-space analysis by finding all the critical points and their stability conditions. Also, we compared our results with the latest H(z) and Supernovae Ia observational data. In particular, we found the conditions for the existence of scaling regimes during the dark matter era. Furthermore, we obtained the conditions for a successful exit from the scaling regime, such that, at late times, the universe tends towards an attractor point describing the dark energy-dominated era. These intriguing features can allow us to alleviate the energy scale problem of dark energy since, during a scaling regime, the field energy density is not necessarily negligible at early times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call