Abstract

A polymer containing fine droplets of liquid crystal (LC) is investigated for obtaining an optical phase-shifting attenuator at 1550-nm wavelength. Two mixtures of liquid crystals and monomers are compared for a cell thickness of 15 μm. The first method uses nanosized LC droplets to achieve 2.29-rad phase shifting for an applied voltage of 230 Vrms. The second method uses microsized LC droplets to achieve 2.35-rad phase shifting for an applied voltage of 15 Vrms. Theoretical analysis of the phase shifting is developed. This optical property is used to achieve a variable optical attenuator (VOA) between two single-mode fibers. An optical architecture using graded index rod lenses and a pattern of photoresist polymer is presented. Typical characteristics of such VOA are: 12-dB range of attenuation, a maximum polarization dependence loss of 0.5 dB, 1.1-dB insertion loss, and a saturation voltage of 20 Vrms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.