Abstract

We present a new type of phase-shifting interferometer, which utilizes a polarizing prism to form quadrature phase-shifted fringe patterns onto a single imaging sensor. By changing the direction of linear polarization of the incident light orthogonally, four phase-shifted fringe patterns in quadrature are obtained by taking images twice; thus it is possible to reduce phase errors caused by mechanical vibrations and air turbulence that occur in temporal phase-shifting interferometers. We present the principle of this interferometer with its theoretical analysis, using the Jones matrix, along with experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call