Abstract

We analyze the dynamics of a quantum dipole emitter (QDE) illuminated by a resonant electromagnetic field and placed close to a metal nanostructure, whose response to the incident field is phase shifted by 3π/2 (-π/2). It is found that, due to the phase shift in a field scattered by the nanostructure (and acting on the QDE along with the incident field), QDE dynamics is characterized by a fast QDE transition to the excited state followed by relaxation to a stable superposition (of the excited and ground states) with a close to 1 probability of the QDE to be found in the excited state. We further argue that this effect can advantageously be used for luminescence upconversion enhancement when being realized for a lower excited state in the energy transfer upconversion process since, by largely eliminating the radiative relaxation channel, the probability of excitation transfer will be increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.