Abstract
Cascaded H-bridge (CHB) converters are attractive candidates for next generation photovoltaic (PV) inverters. CHB converters present a reduced voltage stress per power switch and a high modularity. Therefore, the plant can be divided in several PV strings that can be connected to each H-bridge cell. However, due to variability on solar irradiance conditions, each PV string may present different maximum available power levels, which difficult the overall converter operation. To address this issue, this article presents a model predictive control (MPC) strategy, which works along with a phase-shifted pulsewidth modulation (PS-PWM) stage; hence, its name phase-shifted MPC (PS-MPC). The novelty of this proposal is the way both interbridge and interphase power imbalance are directly considered into the optimal control problem by a suitable system reference design. Thus, the interphase imbalance power is tackled by enforcing the converter to operate with a proper zero-sequence voltage component. Then, by exploiting the PS-PWM working principle, PS-MPC is able to handle each H-bridge cell independently. This allows the predictive controller to also deal with an interbridge power imbalance using the same control structure. Experimental results on a 3-kW prototype are provided to verify the effectiveness of the proposed PS-MPC strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.