Abstract

Intrinsic magnetic topological insulators (IMTIs) have a non-trivial band topology in combination with magnetic order. This potentially leads to fascinating states of matter, such as quantum anomalous Hall (QAH) insulators and axion insulators. One of the theoretically predicted IMTIs is VBi2Te4, but experimental evidence of this material is lacking so far. Here, we report on our attempts to synthesise VBi2Te4 by molecular beam epitaxy (MBE). X-ray diffraction reveals that in the thermodynamic phase space reachable by MBE, there is no region where VBi2Te4 is stably synthesised. Moreover, scanning transmission electron microscopy shows a clear phase separation to Bi2Te3 and VTe2 instead of the formation of VBi2Te4. We suggest the phase instability to be due to either the large lattice mismatch between VTe2 and Bi2Te3 or the unfavourable valence state of vanadium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.