Abstract

During the formation of distinct bilayer NiGePt alloy, a phase-separation phenomenon was observed using microwave annealing and structural engineering. The microstructures of bilayer NiGePt [PtGe(Ni)–NiGe(Pt)] alloys fabricated with 10-nm Ni and various thicknesses of Pt (5, 10, and 15 nm) were characterized. Within the same thermal budget as microwave annealing, the diffusion of Ni exhibited stronger alloy formation ability with Ge and drilled through the Pt layer without resistance. The higher diffusivity of Ni atoms dominated the diffusion of Ni through the Pt layer to form a stable crystalline layer, NiGe(Pt). Ge diffused outwardly toward the Pt layer to form a PtGe(Ni) layer. This special phenomenon of bilayer alloy formation was elucidated using nanobeam electron diffraction by transmission electron microscopy in conjunction with energy-dispersive spectrometry. Comparing the differences in metal alloys between microwave and rapid thermal annealing, microwave annealing formed a bilayer alloy more apparently than rapid thermal annealing. The results and electrical characteristics indicated that a thicker Pt layer for forming a bilayer NiGePt alloy with alloy separation could also effectively improve the leakage current of NiGePt [PtGe(Ni)– NiGe(Pt)]/n-Ge Schottky junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.