Abstract

Mesoporous silica and carbon materials have been successfully synthesized via a novel calcination induced phase separation of organic/inorganic hybrids prepared from solvothermal polymerization of polyvinyl alcohol (PVA) and tetraethyl orthosilicate (TEOS) in dimethyl sulfoxide (DMSO). Combined characterizations of XRD, nitrogen isotherms, and TEM techniques show that the samples have worm-like mesostructures with uniform pore size distributions and large BET surface areas. 1H NMR spectra reveal that ethanol was generated after the solvothermal treatments, indicating the polymerization of PVA and TEOS. Open mesopores of the desired silicas or carbons could be fabricated by calcining the hybrids in air and nitrogen, respectively. This route might open a new methodology to synthesize mesoporous materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.