Abstract

Liquid-liquid phase separation in diverse manufacturing and biological contexts often occurs in the presence of aggregated particles or complex-shaped structures that do not actively participate in the phase separation process, but these "background" structures can serve to direct the macroscale phase separation morphology by their local symmetry-breaking presence. We perform Cahn-Hilliard phase-field simulations in two dimensions to investigate the morphological evolution, wetting, and domain growth phenomena during the phase separation of a binary mixture in contact with model fractal aggregates. Our simulations reveal that phase separation initially accelerates around the fractal due to the driving force of wetting, leading to the formation of the target composition patterns about the fractals, as previously observed for circular particles. After the formation of a wetting layer on the fractal, however, we observe a dramatic slowing-down in the kinetics of phase separation, and the characteristic domain size eventually "pins" to a finite value or approaches an asymptotic scaling regime as an ordinary phase if the phase separation loses memory of the aggregates when the scale of phase separation becomes much larger than the aggregate. Furthermore, we perform simulations to examine the effects of compositional interference between fractals with a view to elucidating interesting novel morphological features in the phase-separating mixture. Our findings should be helpful in understanding the qualitative aspects of the phase separation processes in mixtures containing particle aggregates relevant for coating, catalyst, adhesive, and electronic applications as well as in diverse biological contexts, where phase separation occurs in the presence of irregular heterogeneities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call