Abstract

Phase separation (PS) produces InN composition gradients in InGaN islands, which may be important for light emitting diodes, solar cells, and lasers. Thus, the control of PS is critical, and the kinetic growth process, which is suggested to be important for controlling PS in Stranski-Krastanov islands, becomes a key factor in producing materials for optoelectronic devices. We present atomistic-strain-model Monte Carlo simulations for PS in strained epitaxial InGaN islands. Our simulations illustrate how the PS in InGaN islands depends on the kinetic growth mode and subsurface diffusion, and thus suggest ideas for controlling the microstructure of alloy islands formed during epitaxial growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call