Abstract
In this work, we report on the composition, short- and long-range structural order of single molecular beam epitaxy grown In(x)Ga(1-x)N nanowires using a hard X-ray synchrotron nanoprobe. Nano-X-ray fluorescence mapping reveals an axial and radial heterogeneous elemental distribution in the single wires with Ga accumulation at their bottom and outer regions. Polarization-dependent nano-X-ray absorption near edge structure demonstrates that despite the elemental modulation, the tetrahedral order around the Ga atoms remains along the nanowires. Nano-X-ray diffraction mapping on single nanowires shows the existence of at least three different phases at their bottom: an In-poor shell and two In-rich phases. The alloy homogenizes toward the top of the wires, where a single In-rich phase is observed. No signatures of In-metallic precipitates are observed in the diffraction spectra. The In-content along the single nanowires estimated from X-ray fluorescence and diffraction data are in good agreement. A rough picture of these phenomena is briefly presented. We anticipate that this methodology will contribute to a greater understanding of the underlying growth concepts not only of nanowires but also of many nanostructures in materials science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.