Abstract

In this paper we present a near-field microscopy study of thin films of a phase-separated blend of the fluorescent conjugated-polymer poly(9,9-dioctylfluorene) [PFO] with the non-fluorescent polymer polymethylmethacrylate [PMMA]. A scanning near-field optical microscope (NSOM) was used to generate (blue) fluorescence from the PFO following UV excitation at 362 nm. A range of different concentrations of PFO in PMMA were studied ranging from 1 to 50% PFO in PMMA by mass. By studying both the shear force and fluorescence images we were able accurately to determine the distribution of PFO in the PMMA. We found that phase separation occurs over a number of different length-scales between 5 micro m and 250 nm. We show that at PFO concentrations of 1%, the PFO lies on top of the PMMA. At a PFO relative concentration of 50%, the PMMA phase extends through the whole thickness of the film to the underlying substrate. We use such samples to discuss the resolution of NSOM when imaging thick organic films. Furthermore, we confirm that the length-scales of phase separation can be modified via control over spin-casting protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.