Abstract
Aluminosilicates (AS) are ubiquitous in ceramics, geology, and planetary science, and their glassy forms underpin vital technologies used in displays, waveguides, and lasers. In spite of this, the nonequilibrium behavior of the prototypical AS compound, mullite (40SiO2-60Al2O3, or AS60), is not well understood. By deeply supercooling mullite-composition liquid via aerodynamic levitation, we observe metastable liquid–liquid unmixing that yields a transparent two-phase glass, comprising a nanoscale mixture of AS7 and AS62. Extrapolations from X-ray scattering measurements show the AS7 phase is similar to vitreous SiO2 with a few Al species substituted for Si. The AS62 phase is built from a highly polymerized network of 4-, 5-, and 6-coordinated AlOx polyhedra. Polymerization of the AS62 network and the composite morphology provide essential mechanisms for toughening the glass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.