Abstract
The phase separation observed at low temperature (below circa 600 K) in the U1-yCeyO2-x system and for values of y between roughly 0.34 and 0.5 purportedly involves fluorite structures only. However, for y values above 0.5, an oxygen-deficient C-type bixbyite is also reported. In this work, the phase separation in U0.54Ce0.46O2-x has been reexamined using X-ray and neutron diffraction. Below a critical temperature, the existence of two fluorite related structures in the miscibility gap is confirmed: a stoichiometric U0.54Ce0.46O2 phase and an oxygen-deficient U0.54Ce0.46O2-x phase. Although the former is indeed a fluorite, we show that the other end-member phase has a C-type bixbyite structure. This would suggest that the oxygen-deficient phase can be described as a bixbyite over the entire cerium composition range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.