Abstract

Extensive molecular dynamics simulations are used to investigate the phase separation kinetics in a glass-forming binary Lennard-Jones mixture. The focus is on the two-phase region at low temperatures (i.e. below the glass transition line), where coexistence between a low-density gas with a metastable amorphous solid, i.e. a glass occurs. Two different quench paths are chosen to get into the two-phase region starting from a structurally homogeneous state, one along which temperature is lowered at a fixed density, and in the other case, the volume is expanded to reach lower densities at fixed temperatures. Both paths are explored by tuning the rates of cooling or expansion, respectively. We analyze thermodynamic and structural properties of the phase-separating systems, in particular with respect to differences in the morphologies that are obtained from the different quench protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call