Abstract

The phase behavior is investigated for systems composed of a large number of macromolecular components N, with N ≥ 2. Liquid-liquid phase separation is modeled using a virial expansion up to the second order of the concentrations of the components. Formal analytical expressions for the spinodal manifolds in N dimensions are derived, which simplify their calculation (by transforming the original problem into inequalities that can be evaluated numerically using linear programming techniques). In addition, a new expression is obtained to calculate the critical manifold and composition of the coexisting phases. The present analytical procedure complements previous attempts to handle spinodal decomposition for many components using a statistical approach based on random matrix theory. The results are relevant for predicting the effects of polydispersity on phase behavior in fields like polymer or food science and liquid-liquid phase separation in the cytosol of living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.