Abstract

Low temperature phase separation in mixtures of ^{3}He and ^{4}He isotopes is a unique property of quantum fluids. Hydrogen has long been considered as another potential quantum liquid and has been predicted to be superfluid at T≤1 K, well below freezing temperature of ≈14 K. Phase separation has also been predicted in mixtures of para-H_{2} and D_{2} at temperatures ≤3 K. To defer the freezing, we produced clusters containing para-H_{2} and D_{2} at an estimated temperature of ≈2 K whose state was studied by vibrational Raman spectroscopy. The results indicate that the clusters are liquid and show the phase separation of the isotopes. The phase separation is further corroborated by the quantum molecular dynamics simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.