Abstract

The phase behavior of charge-stabilized colloidal suspensions is modeled by a combination of response theory for electrostatic interparticle interactions and variational theory for free energies. Integrating out degrees of freedom of the microions (counterions, salt ions), the macroion-microion mixture is mapped onto a one-component system governed by effective macroion interactions. Linear response of microions to the electrostatic potential of the macroions results in a screened-Coulomb (Yukawa) effective pair potential and a one-body volume energy, while nonlinear response modifies the effective interactions [A. R. Denton, Phys. Rev. E 70, 031404 (2004)]. The volume energy and effective pair potential are taken as input to a variational free energy, based on thermodynamic perturbation theory. For both linear and first-order nonlinear effective interactions, a coexistence analysis applied to aqueous suspensions of highly charged macroions and monovalent microions yields bulk separation of macroion-rich and macroion-poor phases below a critical salt concentration, in qualitative agreement with predictions of related linearized theories [R. van Roij, M. Dijkstra, and J.-P. Hansen, Phys. Rev. E 59, 2010 (1999); P. B. Warren, J. Chem. Phys. 112, 4683 (2000)]. It is concluded that nonlinear screening can modify phase behavior but does not necessarily suppress bulk phase separation of de-ionized suspensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call