Abstract

A model is presented in which the bonds of a honeycomb lattice are covered by rodlike molecules of types AA and BB, molecular ends near a common site having both three-body interactions and orientation-dependent bonding between two A molecular ends and between an A and a B molecular end. Phase diagrams corresponding to the separation into AA-rich and BB-rich phases are calculated exactly. Depending on the relative strengths of the interactions, one of several qualitatively different types of phase diagrams can result, including diagrams containing phenomena such as a double critical point or two separate asymmetric closed loops. The model is essentially a limiting case of a previously considered ternary solution model, and it is equivalent to a two-component system of interacting A and B molecules on the sites of a kagomé lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.