Abstract

The phase behavior and matrix dynamics of amorphous blends of octenyl succinic anhydride (OSA) modified starch and sucrose was studied as function of blend composition and water content. Phase separation into two amorphous phases, one enriched in OSA starch and the other in sucrose, was confirmed by differential scanning calorimetry (DSC). DSC and 1H solid-state NMR show that the phase separation is only partial. The glass transition temperature (Tg) of the OSA starch-rich phase was found to be ∼30–100 K higher than the Tg of the sucrose-rich phase, depending on blend composition and water content. A novel type of coupling between changes in physical state of the sucrose-rich phase and plasticizer redistribution is proposed, leading to an unexpected increase of the glass transition temperature of the modified starch-rich phase at higher matrix water contents. A quantitative model for the phase separation of the anhydrous blends into two amorphous phases is presented. The model predicts that, with increasing blend sucrose content, the weight fraction of the sucrose-rich phase decreases, while the sucrose content of both the OSA starch-rich phase and the sucrose-rich phase increases. This novel phenomenon is relevant in the understanding of the stability and performance of multiphase food and pharmaceutical components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call