Abstract
One of the challenges with regard to the aqueous amine-based CO2 capture process is the considerable energy requirement for solvent regeneration. To overcome this challenge, a biphasic solvent was employed in this study. Here, the phase separation behavior of amine blends depending on the characteristic structures of the solvent component was investigated using a turbidity measurement apparatus. Amines were classified as (1) primary/secondary amines or tertiary/sterically hindered amines depending on the CO2 reaction species, such as carbamate and bicarbonate (2) alkyl and alkanolamines, depending on the presence of a hydroxyl group, (3) chain and cyclic amines, and (4) mono- and polyamines depending on the molecular structure. Easy phase separation occurred in solvent blends containing polyamines such as DETA (diethylenetriamine), TETA (triethylenetetramine), and DEEA (2-(diethylamino) ethanol). The types with the greatest potential were the DETA/DEEA blended solvents. A phase separation could be determined based on the difference in the reaction rate with CO2 and the low solubility between the carbamate species of DETA and DEEA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.