Abstract

The morphological and structural properties of sodium silicate (Na2O–SiO2) glasses were analyzed using atomic force microscopy (AFM) and light scattering following thermal treatments. AFM observations indicated that the glass surface microstructure evolves during the phase separation mechanisms from continuous interpenetrating phases in the spinodal decomposition process to separated droplets embedded in a continuous matrix for the nucleation/growth one. Raman mapping gave evidence of a phase separation through the nucleation/growth process with formation of silica‐rich clusters characterized by higher polymerization degree as separate droplets. The variations in inhomogeneities versus temperature investigated by Brillouin are exponential for spinodal decomposition and linear in the case of nucleation/growth mechanism. Nuclear magnetic resonance spectroscopy was used to investigate the spatial distribution of the various Qn species present in thermally treated glasses and allows determining fractal dimension between two and three.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.