Abstract

The process of phase separation in elastic solids and viscous fluids is of fundamental importance to the stability and function of soft materials. We explore the dynamics of phase separation and domain growth in a viscoelastic material such as a polymer gel. Using analytical theory and Monte Carlo simulations, we report a domain growth regime in which the domain size increases algebraically with a ripening exponent [Formula: see text] that depends on the viscoelastic properties of the material. For a prototypical Maxwell material, we obtain [Formula: see text], which is markedly different from the well-known Ostwald ripening process with [Formula: see text]. We generalize our theory to systems with arbitrary power-law relaxation behavior and discuss our findings in the context of the long-term stability of materials as well as recent experimental results on phase separation in cross-linked networks and cytoskeleton.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call