Abstract

Both La0.375Pr0.25Ca0.375MnO3 (LPCMO) and La0.625Ca0.375MnO3 (LCMO) were found to exhibit coexistence of competing orders (phase separation) over a wide temperature range. However, substantial hysteretic behaviors in both of the temperature-dependent resistance [R(T)] and magnetization [M(T)] [also known as the persistent magnetic memory effect (PMME)] are only displayed in LPCMO. The results indicate that, in LPCMO, the size distribution of the coexisting charge-ordered insulating and metallic ferromagnetic (FM) phases plays a determinant role in the PMME effects in different temperature regimes. Moreover, due to the direct competition between the two coexisting phases, the system is most susceptible to the external applied field in the hysteretic temperature region. On the other hand, in LCMO, the phase transition between paramagnetic and FM is more like an isomorphic transition in pure materials, and thus does not show significant hysteresis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call