Abstract

We examine the applicability of the extended law of corresponding states (ELCS) to equilibrium and non equilibrium features of the state diagram of the globular protein lysozyme. We provide compelling evidence that the ELCS correctly reproduces the location of the binodal for different ionic strengths, but fails in describing the location of the arrest line. We subsequently use Mode Coupling Theory (MCT) to gain additional insight into the origin of these observations. We demonstrate that while the critical point and the connected binodal and spinodal are governed by the integral features of the interaction potential described by the normalized second virial coefficient, the arrest line is mainly determined by the attractive well depth or bond strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.